Expression and Molecular Analysis of the ArabidopsisDXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway
Open Access
- 1 August 2002
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 129 (4) , 1581-1591
- https://doi.org/10.1104/pp.003798
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. In Arabidopsis, DXR is encoded by a single-copy gene. We have cloned a full-length cDNA corresponding to this gene. A comparative analysis of all plant DXR sequences known to date predicted an N-terminal transit peptide for plastids, with a conserved cleavage site, and a conserved proline-rich region at the N terminus of the mature protein, which is not present in the prokaryotic DXR homologs. We demonstrate that Arabidopsis DXR is targeted to plastids and localizes into chloroplasts of leaf cells. The presence of the proline-rich region in the mature Arabidopsis DXR was confirmed by detection with a specific antibody. A proof of the enzymatic function of this protein was obtained by complementation of anEscherichia coli mutant defective in DXR activity. The expression pattern of β-glucuronidase, driven by theDXR promoter in Arabidopsis transgenic plants, together with the tissue distribution of DXR transcript and protein, revealed developmental and environmental regulation of theDXR gene. The expression pattern of theDXR gene parallels that of the Arabidopsis 1-deoxy-d-xylulose 5-phosphate synthase gene, but the former is slightly more restricted. These genes are expressed in most organs of the plant including roots, with higher levels in seedlings and inflorescences. The block of the 2-C-methyl-d-erythritol 4-phosphate pathway in Arabidopsis seedlings with fosmidomycin led to a rapid accumulation of DXR protein, whereas the 1-deoxy-d-xylulose 5-phosphate synthase protein level was not altered. Our results are consistent with the participation of the Arabidopsis DXR gene in the control of the 2-C-methyl-d-erythritol 4-phosphate pathway.Keywords
This publication has 46 references indexed in Scilit:
- Identification of (E)‐4‐hydroxy‐3‐methyl‐but‐2‐enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coliFEBS Letters, 2001
- 1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cellsPlant Physiology and Biochemistry, 2000
- Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coliFEBS Letters, 2000
- ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sitesProtein Science, 1999
- CLA1, a novel gene required for chloroplast development, is highly conserved in evolutionThe Plant Journal, 1996
- The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase isoform with an extended N‐terminal regionThe Plant Journal, 1995
- Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in PlantsAnnual Review of Plant Biology, 1995
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970