Interaction of Low-Level Flow with the Western Ghat Mountains and Offshore Convection in the Summer Monsoon
Open Access
- 1 April 1984
- journal article
- Published by American Meteorological Society in Monthly Weather Review
- Vol. 112 (4) , 652-672
- https://doi.org/10.1175/1520-0493(1984)112<0652:iollfw>2.0.co;2
Abstract
Seven-year averaged values of percent frequency of occurrence of highly reflective cloud for the months June, July, and August indicate that offshore convection is a major component of the cloudiness of the southwest monsoon. Principal areas of convection occur off of the western coats of India, Burma, Thailand, and the Philippines. This study concentrates on the area upstream of the Western Ghats Mountains of India. Analysis of a special boundary layer mission flown during the WMO/ICSU Summer Monsoon Experiment leads us to believe that partial deceleration of the monsoon flow by upstream blocking effects of the mountains initiates and maintains a vertical and horizontal motion field that could support the observed convection. Data obtained on this mission allow a large-scale momentum budget computation for the subcloud layer, which shows pressure deceleration to be significant. The budget, dominated by advection, predicts an increase of average wind speed which is observed. The pressure decelera... Abstract Seven-year averaged values of percent frequency of occurrence of highly reflective cloud for the months June, July, and August indicate that offshore convection is a major component of the cloudiness of the southwest monsoon. Principal areas of convection occur off of the western coats of India, Burma, Thailand, and the Philippines. This study concentrates on the area upstream of the Western Ghats Mountains of India. Analysis of a special boundary layer mission flown during the WMO/ICSU Summer Monsoon Experiment leads us to believe that partial deceleration of the monsoon flow by upstream blocking effects of the mountains initiates and maintains a vertical and horizontal motion field that could support the observed convection. Data obtained on this mission allow a large-scale momentum budget computation for the subcloud layer, which shows pressure deceleration to be significant. The budget, dominated by advection, predicts an increase of average wind speed which is observed. The pressure decelera...Keywords
This publication has 0 references indexed in Scilit: