Abstract
Results of recent investigations concerning the mechanisms of animal cell division are reviewed. The mitotic apparatus was aspirated from a blastomere of a sand dollar (Echinarachnius parma) egg before second cleavage, and the time interval between removal and the appearance of the furrow in the control companion blastomere was measured. When the mitotic apparatus is removed 4 min or less before the furrows appear in the controls, furrows also develop in the operated cells. These results show that 4 min before furrowing begins, the surface changes which lead to formation of the division mechanism have become irreversible. When the mitotic apparatus of a cylindrical cell is shifted by pushing in one of the poles when the furrow appears, a new furrow develops in association with the new position of the mitotic apparatus. The same mitotic apparatus could elicit as many as 13 furrows over a 24.5 min period following the appearance of the first furrow. The results show that, in the proper geometrical circumstances, the mitotic apparatus and the surface can interact over a longer period than they do in normal cells. By artificially constricting sand dollar eggs with a glass loop, the normal distance relations between the astral centers and the polar and equatorial surfaces can be reversed. Constricted cells cleave normally. The blocking effect of ethyl urethane can be reversed by moving the equatorial surface closer to the spindle portion of the mitotic apparatus. Relocation of other parts of the surface closer to the mitotic apparatus was ineffective. These results help elucidate the geometrical relations that are essential for furrow formation between the mitotic apparatus and the surface. In cylindrical sand dollar eggs, single asters and the widely separated asters of a broken mitotic apparatus can cause furrow-like constrictions in the adjacent cylindrical surface. This reaction can be blocked by treating cells with ethyl urethane, which reduces astral size. The nature of the shape change that the aster causes depends upon the surface region affected. These results aid in understanding the nature of the change in surface physical activity caused by the mitotic apparatus.