Multiphase-Multistep Gadolinium-Enhanced MR Angiography of the Abdominal Aorta and Runoff Vessels
- 1 May 2001
- journal article
- research article
- Published by Wolters Kluwer Health in Investigative Radiology
- Vol. 36 (5) , 283-291
- https://doi.org/10.1097/00004424-200105000-00006
Abstract
Schoenberg SO, Londy FJ, Licato P, et al. Multiphase-multistep gadolinium-enhanced MR angiography of the abdominal aorta and runoff vessels. Invest Radiol 2001;36:283–291. To optimize three-dimensional gadolinium magnetic resonance angiography (3D-Gd-MRA) of the aorta and runoff vessels by addressing fundamentally different requirements for temporal and spatial resolution in a single semiautomated examination. The technique was designed to obtain pure arterial-phase 3D-Gd-MR angiograms with adequate spatial resolution for each station while avoiding incomplete enhancement due to delayed filling vessels as well as venous overlay. During gadolinium-chelate infusion, a breath-held multiphase 3D-Gd-MRA scan was initiated in the aorta by automatic triggering, followed by automatic table movement. The acquisition was tailored to the vessels of interest by tilting of the 3D volumes. A spatial resolution of 1.7 × 1.2 × 0.8 mm in the calves was achieved by use of elliptical-centric k-space reordering. Signal-to-noise ratio was maximized with a 12-element peripheral vascular coil. Twelve patients with peripheral vascular disease were studied. In cases of aortic occlusive disease (n = 2), dissections (n = 3), or aneurysms (n = 4), substantially delayed fill-in of reconstituted arteries, false lumens, or aneurysmal segments occurred, which was detected only on the later 3D-Gd-MRA phase. High-resolution arterial-phase scans in the calves were obtained, with only one case of substantial venous overlay. Correlation to digital subtraction angiography revealed excellent agreement of pathological findings. Multiphase-multistep 3D-Gd-MRA reduces the limitations of standard 3D-Gd-MRA techniques with respect to anatomic coverage, spatial resolution, and nonuniform arterial vessel enhancement.Keywords
This publication has 21 references indexed in Scilit:
- Abdominal Aortic AneurysmInvestigative Radiology, 1999
- Renal Arteries: Optimization of Three-dimensional Gadolinium-enhanced MR Angiography with Bolus-timing-independent Fast Multiphase Acquisition in a Single Breath HoldRadiology, 1999
- Three-dimensional high-resolution dynamic contrast-enhanced MR angiography of the pelvis and lower extremities with use of a phased array coil and subtraction: diagnostic accuracy.Journal of Magnetic Resonance Imaging, 1998
- Contrast-Enhanced Magnetic Resonance Angiography of Peripheral VesselsInvestigative Radiology, 1998
- Contrast‐enhanced 3D MRA with centric ordering in k space: A preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculatureJournal of Magnetic Resonance Imaging, 1998
- Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography.Radiology, 1998
- Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography.Radiology, 1998
- Peripheral vascular MR angiography: the time has come.Radiology, 1998
- Contrast-enhanced abdominal MR angiography: optimization of imaging delay time by automating the detection of contrast material arrival in the aorta.Radiology, 1997
- Time‐resolved contrast‐enhanced 3D MR angiographyMagnetic Resonance in Medicine, 1996