Offshore Tower Shading Effects on In-Water Optical Measurements

Abstract
A field campaign was performed to estimate the shading effect induced on in-water irradiance and radiance measurements taken in the immediate vicinity of the Acqua Alta Oceanographic Tower (AAOT), located in the northern Adriatic Sea, which is regularly used to support ocean color validation activities. Sequences of downwelling irradiance and upwelling radiance profiles were collected at varying distances from the tower to evaluate the shading effects during clear-sky conditions as a function of the deployment distance. The experimental data, as well as Monte Carlo simulations, indicate that the shading effect is negligible for both downwelling irradiances and upwelling radiances at deployment distances greater than 15 and 20 m, respectively. At closer distances, for example, at the 7.5-m deployment distance regularly used at the AAOT for the collection of underwater optical measurements, the shading effect is remarkable: both field and simulated data at a depth of 7 m and a wavelength of 443 nm show that, with a relatively low sun zenith angle of 22°, the shading effect is within 3% for downwelling irradiance and within 8% for upwelling radiance. Monte Carlo simulations at 443, 555, and 665 nm, computed at a depth of 0 m and with values of seawater inherent optical properties representative of the AAOT site, are used to extend considerations on shading effects to measurements taken during different illumination conditions at the 7.5-m deployment distance. Simulations for ideal clear-sky conditions (i.e., in the absence of atmospheric aerosols) show that errors induced by AAOT perturbations significantly vary as a function of wavelength and sun zenith angle. The highest values are observed at 443 nm where, with the sun zenith angle ranging from 20° to 70°, errors vary from 2.4% to approximately 6.2% for downwelling irradiance and from a minimum of 3.0% (occurring at 30°) to almost 6.6% for upwelling radiance. Simulations also show that the shading error can be as high as approximately 20% for both irradiance and radiance measurements taken during overcast sky conditions.

This publication has 0 references indexed in Scilit: