Analytical description of the breakup of liquid jets

Abstract
A viscous or inviscid cylindrical jet with surface tension in a surrounding medium of negligible density tends to pinch owing to the mechanism of capillary instability. We construct similarity solutions which describe this phenomenon as a critical time is encountered, for three distinct cases: (i) inviscid jets governed by the Euler equations, (ii) highly viscous jets governed by the Stokes equations, and (iii) viscous jets governed by the Navier-Stokes equations. We look for singular solutions of the governing equations directly rather than by analysis of simplified models arising from slender-jet theories. For Stokes jets implicitly defined closed-form solutions are constructed which allow the scaling exponents to be fixed. Navier-Stokes pinching solutions follow rationally from the Stokes ones by bringing unsteady and nonlinear terms into the momentum equations to leading order. This balance fixes a set of universal scaling functions for the phenomenon. Finally we show how the pinching solutions can be used to provide an analytical description of the dynamics beyond breakup.

This publication has 12 references indexed in Scilit: