PKCθ promotes c-Rel–driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis

Abstract
The vast majority of primary human breast cancer tissues display aberrant nuclear NF-κB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor α (ERα) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCθ-Akt pathway that leads to downregulation of ERα synthesis and derepression of c-Rel. ERα levels were lower in c-Rel–induced mammary tumors compared with normal mammary gland tissue. PKCθ induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2α–driven mouse mammary tumor–derived cell lines. RNA expression levels of PKCθ and c-Rel target genes were inversely correlated with ERα levels in human breast cancer specimens. PKCθ activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERα and p27Kip1. Thus we have shown that activation of PKCθ inhibits the FOXO3a/ERα/p27Kip1 axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer.