Rhythmic Whisking by Rat: Retraction as Well as Protraction of the Vibrissae Is Under Active Muscular Control
- 1 January 2003
- journal article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 89 (1) , 104-117
- https://doi.org/10.1152/jn.00600.2002
Abstract
The rhythmic motor activity of the vibrissae that rodents use for the tactile localization of objects provides a model system for understanding patterned motor activity in mammals. The muscles that drive this whisking are only partially fixed relative to bony attachments and thus shift their position along with the movement. As a means to characterize the pattern of muscular dynamics during different patterns of whisking, we recorded electromyogram (EMG) activity from the muscles that propel individual follicles, as well as EMG activity from a muscle group that moves the mystacial pad. The dominant pattern of whisking in our behavioral paradigm, referred to as exploratory whisking, consisted of large amplitude sweeps in the frequency range of 5–15 Hz. The frequency remained remarkably constant within a bout of whisking but changed values between bouts. The extrinsic musculature, which shifts the surface of the pad backwards, was found to be activated in approximate antiphase to that of the intrinsic muscles, which rotate individual vibrissae forward. Thus retraction of the vibrissae was driven by a backward shift in the attachment point of the follicles to the mystacial pad. In a less frequent pattern of whisking, referred to as foveal whisking, the vibrissae are thrust forward and palpate objects with low-amplitude movements that are in the higher frequency range of 15–25 Hz. Protraction of the vibrissae remains driven by the intrinsic muscles, while retraction in this pattern is largely passive. Interestingly, a mechanical argument suggests that activation of the extrinsic muscles during foveal whisking is not expected to affect the angle of the vibrissae. As a means to establish if the phasic control of the intrinsic versus extrinsic muscles depended on sensory feedback, we characterized whisking before and after bilateral transections of the infraorbital branch of the trigeminal sensory nerve. The loss of sensory feedback had no net effect on the antiphase relation between activation of the intrinsic versus extrinsic muscles over the full frequency range for exploratory whisking. These data point to the existence of a dual-phase central pattern generator that drives the vibrissae.Keywords
This publication has 46 references indexed in Scilit:
- Invited Review Anatomical loops and their electrical dynamics in relation to whisking by ratSomatosensory & Motor Research, 1999
- Identification of rat brainstem multisynaptic connections to the oral motor nuclei in the rat using pseudorabies virus: II. Facial muscle motor systemsBrain Research Reviews, 1997
- Sensorimotor Encoding by Synchronous Neural Ensemble Activity at Multiple Levels of the Somatosensory SystemScience, 1995
- When inhibition not excitation synchronizes neural firingJournal of Computational Neuroscience, 1994
- Phase Dynamics for Weakly Coupled Hodgkin-Huxley NeuronsEurophysics Letters, 1993
- Central projections of primary sensory neurons innervating different parts of the vibrissae follicles and intervibrissal skin on the mystacial pad of the ratJournal of Comparative Neurology, 1991
- Relation of olfactory EEG to behavior: Spatial analysis.Behavioral Neuroscience, 1987
- Symmetry and phaselocking in chains of weakly coupled oscillatorsCommunications on Pure and Applied Mathematics, 1986
- Facial morphology and vibrissal movement in the golden hamsterJournal of Morphology, 1985
- Serotonergic facilitation of facial motoneuron excitationBrain Research, 1979