A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations

Abstract
Three similar cryogenic ignition capsule designs for the National Ignition Facility [J. Lindl, Phys. Plasmas 2, 3933 (1995)] are analyzed to determine surface roughness specifications required to mitigate the growth of hydrodynamic instabilities. These capsule utilize brominated plastic, polyimid and copper-doped beryllium ablator materials respectively. Direct three-dimensional numerical simulations with the HYDRA radiation hydrodynamic code [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)] examine the growth of multimode perturbations seeded by roughness on the outer ablator and inner ice surfaces. The simulations, which showed weakly nonlinear behavior for optimized surfaces, were carried through ignition and burn. A three-dimensional multimode perturbation achieves somewhat larger amplitudes in the nonlinear regime than a corresponding two-dimensional simulation of the same rms amplitude. The beryllium and polyimid capsules exhibit enhanced tolerance of roughness on both the ice and ablator surfaces.