Ischemic preconditioning in rats: role of mitochondrial KATPchannel in preservation of mitochondrial function

Abstract
We examined the role of the sarcolemmal and mitochondrial KATPchannels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 ± 1%) versus control (56 ± 1%). The sarcolemmal KATPchannel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial KATPchannel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 ± 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 ± 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 ± 0.30 μmol ⋅ min−1⋅ mg mitochondrial protein−1. Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 ± 0.06 μmol ⋅ min−1⋅ mg mitochondrial protein−1. IPC significantly increased ATP synthesis to 1.86 ± 0.23 μmol ⋅ min−1⋅ mg mitochondrial protein−1. However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 ± 0.15 μmol ⋅ min−1⋅ mg mitochondrial protein−1). These data are consistent with the notion that inhibition of mitochondrial KATPchannels attenuates IPC by reducing IPC-induced protection of mitochondrial function.