Atomic and molecular alignment from photoelectron angular distributions in (n+1) resonantly enhanced multiphoton ionization

Abstract
Two distinct (n+1) REMPI techniques for obtaining the alignment of gas phase atoms and molecules from photoelectron angular distributions are presented. In both methods, the alignment is extracted from the angular distributions independently of the photoionization dynamics. The first method, which takes advantage of circular dichroism in the angular distributions (CDAD) has already been established experimentally as a useful probe of state alignment. The theory outlined in previous work is expanded here. The second method involves photoionization with light linearly polarized along the photoelectron collection direction and is presented here for the first time.