Detecting Pedestrians by Learning Shapelet Features

Abstract
In this paper, we address the problem of detecting pedestrians in still images. We introduce an algorithm for learning shapelet features, a set of mid-level features. These features are focused on local regions of the image and are built from low-level gradient information that discriminates between pedestrian and non-pedestrian classes. Using Ad-aBoost, these shapelet features are created as a combination of oriented gradient responses. To train the final classifier, we use AdaBoost for a second time to select a subset of our learned shapelets. By first focusing locally on smaller feature sets, our algorithm attempts to harvest more useful information than by examining all the low-level features together. We present quantitative results demonstrating the effectiveness of our algorithm. In particular, we obtain an error rate 14 percentage points lower (at 10-6 FPPW) than the previous state of the art detector of Dalal and Triggs on the INRIA dataset.

This publication has 16 references indexed in Scilit: