Selective reconstitution of liver cholesterol biosynthesis promotes lung maturation but does not prevent neonatal lethality in Dhcr7 null mice

Abstract
Targeted disruption of the murine 3β-hydroxysterol-Δ7-reductase gene (Dhcr7), an animal model of Smith-Lemli-Opitz syndrome, leads to loss of cholesterol synthesis and neonatal death that can be partially rescued by transgenic replacement of DHCR7 expression in brain during embryogenesis. To gain further insight into the role of non-brain tissue cholesterol deficiency in the pathophysiology, we tested whether the lethal phenotype could be abrogated by selective transgenic complementation with DHCR7 expression in the liver.