Anomalous Coherent Backscattering of Light from Opal Photonic Crystals
Preprint
- 10 June 2000
Abstract
We studied coherent backscattering (CBS) of light from opal photonic crystals in air at different incident inclination angles, wavelengths and along various [hkl] directions inside the opals. Similar to previously obtained CBS cones from various random media, we found that when Bragg condition with the incident light beam is not met then the CBS cones from opals show a triangular line shape in excellent agreement with light diffusion theory. At Bragg condition, however, we observed a dramatic broadening of the opal CBS cones that depends on the incident angle and [hkl] direction. This broadening is explained as due to the light intensity decay in course of propagation along the Bragg direction {\em before the first} and {\em after the last} scattering events. We modified the CBS theory to incorporate the attenuation that results from the photonic band structure of the medium. Using the modified theory we extract from our CBS data the light mean free path and Bragg attenuation length at different [hkl]. Our study shows that CBS measurements are a unique experimental technique to explore photonic crystals with disorder, when other spectroscopical methods become ambiguous due to disorder-induced broadening.Keywords
All Related Versions
- Version 1, 2000-06-10, ArXiv
- Published version: Physical Review Letters, 86 (21), 4815.
This publication has 0 references indexed in Scilit: