Fission Neutron Spectra and Nuclear Temperatures
- 15 January 1959
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 113 (2) , 527-541
- https://doi.org/10.1103/physrev.113.527
Abstract
It is shown that Weisskopf's nuclear evaporation theory, when allowance is made for the expected distribution of nuclear temperatures of fission fragments, predicts an essentially Maxwellian distribution of fission neutron energies in the laboratory system. This is found to be in excellent agreement with all available data. On the assumption that neutron emission is symmetrical about 90° in the center-of-mass system, the average energy of the fission neutron energy spectrum should be , in which and are the average values of the fission fragment energy per nucleon and the nuclear temperature. Experimentally, Mev for all cases reported, giving fission fragment nuclear temperatures of 0.6 to 0.7 Mev for measured fission neutron spectra. This gives for the equation . The same concepts lead to the prediction , or for +; is the excitation energy change per emitted neutron, about 6.7 Mev, and is the average number of neutrons emitted per fission. This equation, which is approximately valid for all present experimental data, leads to the prediction that for ( is the excitation energy of the fissioning nuclide). The center-of-mass energy spectrum of fission neutrons has also been calculated, as well as effects of anisotropy of emission on the laboratory fission neutron spectrum.
Keywords
This publication has 36 references indexed in Scilit:
- Fission Neutron Spectrum ofPhysical Review B, 1956
- Fission Neutron Spectrum ofPhysical Review B, 1953
- Nuclear Constitution and the Interpretation of Fission PhenomenaPhysical Review B, 1953
- Fission Neutron Spectrum ofPhysical Review B, 1952
- The Angular Distribution of Prompt Neutrons Emitted in FissionPhysical Review B, 1952
- Energy Spectrum of Neutrons from Thermal Fission ofPhysical Review B, 1952
- The Neutron Energy Spectrum fromThermal FissionPhysical Review B, 1952
- A Study of the Spectrum of the Neutrons of Low Energy from the Fission ofPhysical Review B, 1952
- Fission Neutron Spectrum ofPhysical Review B, 1952
- Statistics and Nuclear ReactionsPhysical Review B, 1937