Estimation of Derivatives for Additive Separable Models
- 1 January 1999
- journal article
- research article
- Published by Taylor & Francis in Statistics
- Vol. 33 (3) , 241-265
- https://doi.org/10.1080/02331889908802693
Abstract
Additive regression models have a long history in nonparametric regression. It is well known that these models can be estimated at the one dimensional rate. Until recently, however, these models have been estimated by a backfitting procedure. Although the procedure converges quickly, its iterative nature makes analyzing its statistical properties difficult. Recently, an integration approach has been studied that allows for the derivation of a closed form for the estimator. Although they seem to be competing procedures for the same problem, their interpretation is in fact different. For none of them the quite important question in economics of derivative estimation has been investigated so far. This paper extends the approach of marginal integration to the simultaneous estimation of both the function and its derivatives by combining the integration procedure with a local polynomial approach. Thus, we additionally get a design adaptive estimator. Finally the merits of this procedure with respect to the estimation of a production function subject to separability conditions are discussed. The procedure is applied to livestock production data from Wisconsin, showing performance and handling of these methods in practice. We demonstrate e.g., that there is some evidence of increasing returns to scale for larger farms.This work was first revised in 1995. The research was supported by the Deutsche Forschungsgemeinschaft, SFB 373. The first author, E.Severance-Lossing died in 1996; the mentioned address refers to the second author.Keywords
This publication has 18 references indexed in Scilit:
- Direct estimation of low-dimensional components in additive modelsThe Annals of Statistics, 1998
- Additive Nonlinear ARX Time Series and Projection EstimatesEconometric Theory, 1997
- Nonparametric Estimation of Additive Separable Regression ModelsPublished by Springer Nature ,1996
- A kernel method of estimating structured nonparametric regression based on marginal integrationBiometrika, 1995
- Design-adaptive Nonparametric RegressionJournal of the American Statistical Association, 1992
- Testing Hypotheses of Functional Structure: Some Rules for Determining Flexibility of Restricted Production ModelsAmerican Journal of Agricultural Economics, 1992
- Dual Second‐ and Third‐Order Translog Models of ProductionAmerican Journal of Agricultural Economics, 1991
- Estimating substitution elasticities with the Fourier cost functionJournal of Econometrics, 1985
- On Estimating RegressionTheory of Probability and Its Applications, 1964
- Introduction to a Theory of the Internal Structure of Functional RelationshipsEconometrica, 1947