Clocks and Insensitivity to Small Measurement Errors
Open Access
- 1 January 1999
- journal article
- research article
- Published by EDP Sciences in ESAIM: Control, Optimisation and Calculus of Variations
- Vol. 4, 537-557
- https://doi.org/10.1051/cocv:1999121
Abstract
This paper deals with the problem of stabilizing a system in the presence of small measurement errors. It is known that, for general stabilizable systems, there may be no possible memoryless state feedback which is robust with respect to such errors. In contrast, a precise result is given here, showing that, if a (continuous-time, finite-dimensional) system is stabilizable in any way whatsoever (even by means of a dynamic, time varying, discontinuous, feedback) then it can also be semiglobally and practically stabilized in a way which is insensitive to small measurement errors, by means of a hybrid strategy based on the idea of sampling at a “slow enough” rate. Cet article traite du problème de la stabilisation d'un système en présence de petites erreurs de mesure. Il est connu que, pour des systèmes stabilisables généraux, il ne peut pas exister de feedback d'état sans mémoire qui soit résistant à de telles erreurs. À l'opposé, un résultat précis est donné ici, montrant que, si un système (en temps continu et dimension finie) est stabilisable d'une quelconque façon (même à l'aide d'un feedback dynamique, instationnaire, discontinu), alors il peut être semi-globalement et pratiquement stabilisé d'une façon insensible à de petites erreurs de mesure, à l'aide d'une stratégie hybride reposant sur l'idée d'une prise de mesure de l'état à un rythme suffisamment lent.Keywords
This publication has 11 references indexed in Scilit:
- Stabilization with relaxed controlsPublished by Elsevier ,2002
- Feedback Stabilization and Lyapunov FunctionsSIAM Journal on Control and Optimization, 2000
- A Lyapunov characterization of robust stabilizationNonlinear Analysis, 1999
- Stability and stabilization: discontinuities and the effect of disturbancesPublished by Springer Nature ,1999
- Asymptotic controllability implies feedback stabilizationIEEE Transactions on Automatic Control, 1997
- Control-Lyapunov functions for time-varying set stabilizationPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1997
- A Smooth Converse Lyapunov Theorem for Robust StabilitySIAM Journal on Control and Optimization, 1996
- On Brockett’s Condition for Smooth Stabilizability and Its Necessity in a Context of Nonsmooth FeedbackSIAM Journal on Control and Optimization, 1994
- A Lyapunov-Like Characterization of Asymptotic ControllabilitySIAM Journal on Control and Optimization, 1983
- On the inversion of Ljapunov’s second theorem on stability of motionAmerican Mathematical Society Translations: Series 2, 1963