Subextremal functions and lattice programming
Preprint
- 1 January 2005
- preprint Published in RePEc
Abstract
Let M and N be the set of minimizers of a function f over respective subsets K and L of a lattice, with K being lower than L. This paper characterizes the class of functions f for which M is lower (resp., weakly lower, meet lower, join lower, chain lower) than N for all K lower than L. The resulting five classes of functions, called subextremal variants, have alternate characterizations by variants of the downcrossing-differences property, i.e., their first differences change sign at most once from plus to minus along complementary chains.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: