Absorption of dilaton partial waves by D3-branes
Preprint
- 24 May 1999
Abstract
We calculate the leading term in the low-energy absorption cross section for an arbitrary partial wave of the dilaton field by a stack of many coincident D3-branes. We find that it precisely reproduces the semiclassical absorption cross section of a 3-brane geometry, including all numerical factors. The crucial ingredient in making the correspondence is the identification of the precise operators on the D3-brane world-volume which couple to the dilaton field and all its derivatives. The needed operators are related through T-duality and the IIA/M-theory correspondence to the recently determined M(atrix) theory expressions for multipole moments of the 11D supercurrent. These operators have a characteristic symmetrized trace structure which plays a key combinatorial role in the analysis for the higher partial waves. The results presented here give new evidence for an infinite family of non-renormalization theorems which are believed to exist for two-point functions in ${\cal N} = 4$ gauge theory in four dimensions.
Keywords
All Related Versions
- Version 1, 1999-05-24, ArXiv
- Published version: Nuclear Physics B, 560 (1-3), 207.
This publication has 0 references indexed in Scilit: