The Evolution of an Oklahoma Dryline. part II: Boundary-Layer Forcing of Mesoconvective Systems
- 1 February 1982
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 39 (2) , 237-257
- https://doi.org/10.1175/1520-0469(1982)039<0237:teoaod>2.0.co;2
Abstract
Data from the National Severe Storms Laboratory surface mesonetwork are objectively analyzed to give insight into processes that contributed to the development of three tornadic mesoconvective systems near the 8 June 1974 Oklahoma dryline. Storm cells constituting each of the systems form over recurring zones of convergence within 20 km of the dryline. Different mechanisms appear to force the individual convergence zones. Storms of the first system appear simultaneously only after the establishment of a pressure trough just cast of a zone of convergence 15 km east of the dryline. The convergence zone intensifies and progresses eastward with the storms; meanwhile, a second convergence zone appears at the dryline in response to apparent storm-induced pressure systems trailing the storms. The fact that deep convection did not occur over the second zone is attributed to static stabilization caused by mesoscale unsaturated downdrafts in the upper troposphere. Storms of the second system develop in a c... Abstract Data from the National Severe Storms Laboratory surface mesonetwork are objectively analyzed to give insight into processes that contributed to the development of three tornadic mesoconvective systems near the 8 June 1974 Oklahoma dryline. Storm cells constituting each of the systems form over recurring zones of convergence within 20 km of the dryline. Different mechanisms appear to force the individual convergence zones. Storms of the first system appear simultaneously only after the establishment of a pressure trough just cast of a zone of convergence 15 km east of the dryline. The convergence zone intensifies and progresses eastward with the storms; meanwhile, a second convergence zone appears at the dryline in response to apparent storm-induced pressure systems trailing the storms. The fact that deep convection did not occur over the second zone is attributed to static stabilization caused by mesoscale unsaturated downdrafts in the upper troposphere. Storms of the second system develop in a c...Keywords
This publication has 0 references indexed in Scilit: