Activated p53 suppresses the histone methyltransferase EZH2 gene
- 21 June 2004
- journal article
- Published by Springer Nature in Oncogene
- Vol. 23 (34) , 5759-5769
- https://doi.org/10.1038/sj.onc.1207706
Abstract
Replicative senescence is an irreversible cell cycle arrest that limits the proliferation of damaged cells and may be an important tumor suppression mechanism in vivo. This process is regulated at critical steps by the tumor suppressor p53. To identify genes that may regulate the senescence process, we performed cDNA microarray analysis of gene expression in senescent, young proliferating, and hTERT-immortalized primary human fibroblasts. The histone methyltransferase (HMTase), EZH2, was specifically downregulated in senescent cells. Activated p53 suppressed EZH2 gene expression through repression of the EZH2 gene promoter. This activity of p53 requires intact p53 transactivation and DNA binding domains. Furthermore, the repression of EZH2 promoter by p53 is dependent on p53 transcriptional target p21Waf1 inactivating RB/E2F pathways. In addition, the knockdown of EZH2 expression retards cell proliferation and induces G2/M arrest. We suggest that the p53-dependent suppression of EZH2 expression is a novel pathway that contributes to p53-mediated G2/M arrest. EZH2 associated complex possesses HMTase activity and is involved in epigenetic regulation. Activated p53 suppresses EZH2 expression, suggesting a further role for p53 in epigenetic regulation and in the maintenance of genetic stability. Suppression of EZH2 expression in tumors by p53 may lead to novel approaches to control cancer progression.Keywords
This publication has 63 references indexed in Scilit:
- Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste proteinGenes & Development, 2002
- Role of Histone H3 Lysine 27 Methylation in Polycomb-Group SilencingScience, 2002
- Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity that Marks Chromosomal Polycomb SitesCell, 2002
- Live or let die: the cell's response to p53Nature Reviews Cancer, 2002
- Change of the Death Pathway in Senescent Human Fibroblasts in Response to DNA Damage Is Caused by an Inability To Stabilize p53Molecular and Cellular Biology, 2001
- The language of covalent histone modificationsNature, 2000
- Specific Association of Human Telomerase Activity with Immortal Cells and CancerScience, 1994
- Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein.Genes & Development, 1994
- Investigation of the Role of G1/S Cell Cycle Mediators in Cellular SenescenceExperimental Cell Research, 1993
- Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1Biochemical and Biophysical Research Communications, 1991