The Asymptotically Unbiased Prior Distribution
- 1 August 1965
- journal article
- Published by Institute of Mathematical Statistics in The Annals of Mathematical Statistics
- Vol. 36 (4) , 1137-1152
- https://doi.org/10.1214/aoms/1177699988
Abstract
In estimation of a real valued parameter $ heta$, using observations from the probability density $f(x mid heta)$, and using loss function $L( heta, phi)$, the prior density which minimizes asymptotic bias of the associated estimator is shown to be $J( heta) = varepsilon((partial/partial heta) log f)^2/lbrack(partial^2/partialphi^2)L( heta, phi)
brack^{frac{1}{2}}_{phi = heta}$. Results are also given for estimation in higher dimensions.