Invariant measures of stochastic partial differential equations and conditioned diffusions
- 2 February 2005
- journal article
- Published by Cellule MathDoc/Centre Mersenne in Comptes Rendus Mathematique
- Vol. 340 (4) , 305-308
- https://doi.org/10.1016/j.crma.2004.12.025
Abstract
This work establishes and exploits a connection between the invariant measure of stochastic partial differential equations (SPDEs) and the law of bridge processes. Namely, it is shown that the invariant measure of , where is a space–time white-noise, is identical to the law of the bridge process associated to , provided that a and f are related by , . Some consequences of this connection are investigated, including the existence and properties of the invariant measure for the SPDE on the line, . To cite this article: M.G. Reznikoff, E. Vanden-Eijnden, C. R. Acad. Sci. Paris, Ser. I 340 (2005). On montre et exploite une connection entre la mesure invariante d'équations aux dérivées partielles stochastiques et les lois de processus ponts. En l'occurence, on montre que la mesure invariante de , où est un bruit blanc spatio-temporel, est la même que la loi du processus pont associé à , pourvu que a et f soient reliés comme , . Quelques conséquences de cette connection sont étudiées, comme l'existence et les propriétés d'une mesure invariante de l'équations aux dérivées partielle stochastique sur la ligne, . Pour citer cet article : M.G. Reznikoff, E. Vanden-Eijnden, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Keywords
This publication has 4 references indexed in Scilit:
- Random Perturbations of Dynamical SystemsPublished by Springer Nature ,1998
- Positive Harmonic Functions and DiffusionPublished by Cambridge University Press (CUP) ,1995
- Large fluctuations for a nonlinear heat equation with noiseJournal of Physics A: General Physics, 1982
- Parabolic Itô equations with monotone nonlinearitiesJournal of Functional Analysis, 1978