A review of symbolic analysis of experimental data

Abstract
This review covers the group of data-analysis techniques collectively referred to as symbolization or symbolic time-series analysis. Symbolization involves transformation of raw time-seriesmeasurements (i.e., experimental signals) into a series of discretized symbols that are processed to extract information about the generating process. In many cases, the degree of discretization can be quite severe, even to the point of converting the original data to single-bit values. Current approaches for constructing symbols and detecting the information they contain are summarized. Novel approaches for characterizing and recognizing temporal patterns can be important for many types of experimental systems, but this is especially true for processes that are nonlinear and possibly chaotic. Recent experience indicates that symbolization can increase the efficiency of finding and quantifying information from such systems, reduce sensitivity to measurement noise, and discriminate both specific and general classes of proposed models. Examples of the successful application of symbolization to experimental data are included. Key theoretical issues and limitations of the method are also discussed.

This publication has 100 references indexed in Scilit: