Abstract
Summary It is known that cdd S. typhimurium mutants selected for resistance to 5-fluorodeoxycytidine (FdCyd) possess no deoxycytidine kinase activity. The present study postulates that this method of screening selects double mutants defective in cytidine deaminase and in deoxycytidine kinase. To prove this hypothesis, the cdd mutant of S. typhimurium was constructed by P1-mediated transfer of ccd - gene into a new genetic background, and the activity of deoxycytidine kinase was assayed. Transductants exhibited no deoxycytidine kinase activity, showing that the absence of this enzyme is not limited to a specific cdd - mutant, but includes all strains of S. typhimurium. The toxicity of FdCyd for the bacterial strains possessing deoxycytidine kinase, as well as the role of nucleoside phosphorylase in nucleotide formation by S. typhimurium, is discussed.