Abstract
ON and OFF biopolar cells were identified in the light-adapted carp retina by means of intracellular recording and Lucifer yellow dye injection. The rceptive field centers, determined by measuring the response amplitudes obtained by centered spots of different diameters, were 0.3-1.0 mm for ON bipolar cells and 0.3-0.4 mm for OFF bipolar cells. These central receptive field values were much larger than the dendritic field diameters measured by histological methods. Simultaneous intracellular recordings were made from pairs of neighboring bipolar cells. Current of either polarity injected into one member of a bipolar cell pair elicited a sign-conserving, sustained potential change in the other bipolar cells. The coupling efficiency was nearly identical for both depolarizing and hyperpolarizing currents. The maximum separation of coupled bipolar cells was .apprx. 130 .mu.m. This electrical coupling was reciprocal and summative, and it was observed in cell types of similar function and morphology. Dye coupling was observed in 4 out of 34 stained cells. These results strongly suggest that there is a spatial summation of signals at the level of bipolar cells, which makes their central receptive fields much larger than their dendritic fields.