Microelectrode studies of the tegument and sub-tegumental compartments of male Schistosoma mansoni: an analysis of electrophysiological properties
- 1 August 1982
- journal article
- research article
- Published by Cambridge University Press (CUP) in Parasitology
- Vol. 85 (1) , 163-178
- https://doi.org/10.1017/s0031182000054238
Abstract
SUMMARY: Standard intracellular microelectrode techniques were used to determine the electrical properties of the tegument and sub-tegumental regions in male Schistosoma mansoni. Three distinct compartments of electrical potential were observed. The resting potentials recorded in these compartments of –45·9±2·5 mV (Eteg), –22·0±1·1 mV (E2) and – 4·7±0·3 mV (E3) corroborate those previously reported by Fetterer, Pax & Bennett (1980) and Bricker, Pax & Bennett (1981). Input resistance was measured in each compartment and was found to be 4·5 MΩ (tegument), 9·2 MΩ (E2) and 3·5 MΩ (E3). Time-constants for the tegument, E2 and E3 were 0·24±0·01 msec, 0·25±0·01 msec and 0·13±0·01 msec, respectively. Multiple electrode experiments revealed that the tegument and E2 compartment are electrical syncytia with similar current-spreading capabilities. Low resistance pathways also appear to connect the tegument and E2 region, since electrotonic signals initiated in either of those compartments experience only a 15–25% reduction upon passing into the other. Injecting large (> 200 nA) depolarizing current pulses into the tegument or E2 compartment often resulted in the initiation of active membrane responses. These spikes were highly variable, ranging from 4 to 75 mV in magnitude (occasionally overshooting zero potential by as much as 25 mV) and from 10–40 msec in duration. The responses were not actively propagated along the parasite, and their decay over distance was approximately equal to that predicted on the basis of length constant values obtained from electrotonic signals. The addition of a non-diffusible solute to the recording medium resulted in a significant reduction in the current-spreading capacity of both the tegument and E2 compartment. Coupling ratios between the tegument and E2 compartment were decreased, and the input resistance for both compartments increased, while resting potentials remained constant. Active responses could not be evoked in schistosomes exposed to the hyperosmotic medium.This publication has 15 references indexed in Scilit:
- Schistosoma mansoni: Characterization of the electrical potential from the tegument of adult malesExperimental Parasitology, 1980
- GAP junctions and particle aggregates in the tegumentary syncytium of a trematodeTissue and Cell, 1980
- An analysis of excitatory junctional potentials recorded from arterioles.The Journal of Physiology, 1978
- A benzodiazepine derivative and praziquantel: Effects on musculature of Schistosoma mansoni and Schistosoma japonicumNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1978
- Schistosoma mansoni: Direct method for simultaneous recording of electrical and motor activityExperimental Parasitology, 1977
- Intercellular communication in a positional field: Movement of small ions between insect epidermal cellsDevelopmental Biology, 1974
- Heaviside's “bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranesJournal of Theoretical Biology, 1971
- Current spread in the smooth muscle of the guinea‐pig vas deferensThe Journal of Physiology, 1967
- Electrical responses of smooth muscle to external stimulation in hypertonic solutionThe Journal of Physiology, 1966
- Stimulation of spinal motoneurones with intracellular electrodesThe Journal of Physiology, 1956