Stereochemical probes of bovine plasma amine oxidase: evidence of mirror image processing and a syn abstraction of hydrogens from C-1 and C-2 of dopamine

Abstract
Bovine plasma amine oxidase (PAO) has previously been shown to catalyze a nonstereospecific loss of tritium from [2(R)-3H]- and [2(S)-3H]dopamines, attributed to multiple, catalytically active binding sites for substrate [Summers, M. C., Markovic, R., and Klinman, J. P. (1979) Biochemistry 18, 1969-1979]. Analysis of products formed from incubation of dopamine with PAO in tritiated water indicates a stereospecific, pro-R, incorporation of label at C-2. Thus, tritium washout (random) and washin (pro-R) are not the microscopic reverse of one another. We conclude that the (enamine) intermediates leading to tritium washing are nonequivalently bound. The observation of pro-R incorporation has provided a straightforward synthetic route to [1(R)-2H,2(R)-3H]- and [1(S)-2H,2(R)-3H]dopamines, which upon oxidation with PAO are expected to be processed preferentially by 1S and 1R cleavage, respectively. From previously measured isotope effects, we predict the loss of tritium from the 1(R)-2H and 1(S)-2H samples to be 74:8 for a syn relationship between cleavage at C-1 and C-2 vs. 21:90 for an anti-relationship. The observation of a 68:18 ratio at 100% conversion provides strong evidence for a syn cleavage. The data support a mechanism in which a single base catalyzes a 1,3-prototrophic shift of hydrogen from C-1 of the substrate to cofactor, followed by exchange from C-2. Additionally, the results confirm the presence of alternate binding modes for dopamine at the active site of bovine plasma amine oxidase. This interaction of dopamine with plasma amine oxidase is a rare example of mirror-image catalysis in which a single substrate has two functional binding orientations on an enzyme surface.

This publication has 18 references indexed in Scilit: