Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
- 1 August 1987
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 181 (-1) , 41-76
- https://doi.org/10.1017/s0022112087002003
Abstract
The interaction of a plane weak shock wave with a single discrete gaseous inhomogeneity is studied as a model of the mechanisms by which finite-amplitude waves in random media generate turbulence and intensify mixing. The experiments are treated as an example of the shock-induced Rayleigh-Taylor instability. or Richtmyer-Meshkov instability, with large initial distortions of the gas interfaces. The inhomogeneities are made by filling large soap bubbles and cylindrical refraction cells (5 cm diameter) whose walls are thin plastic membranes with gases both lighter and heavier than the ambient air in a square (8.9 cm side shock-tube text section. The wavefront geometry and the deformation of the gas volume are visualized by shadowgraph photography. Wave configurations predicted by geometrical acoustics, including the effects of refraction, reflection and diffraction, are compared to the observations. Departures from the predictions of acoustic theory are discussed in terms of gasdynamic nonlinearity. The pressure field on the axis of symmetry downstream of the inhomogeneity is measured by piezoelectric pressure transducers. In the case of a cylindrical or spherical volume filled with heavy low-sound-speed gas the wave which passes through the interior focuses just behind the cylinder. On the other hand, the wave which passes through the light high-sound-speed volume strongly diverges. Visualization of the wavefronts reflected from and diffracted around the inhomogeneities exhibit many features known in optical and acoustic scattering. Rayleigh-Taylor instability induced by shock acceleration deforms the initially circular cross-section of the volume. In the case of the high-sound-speed sphere, a strong vortex ring forms and separates from the main volume of gas. Measurements of the wave and gas-interface velocities are compared to values calculated for one-dimensional interactions and for a simple model of shock-induced Rayleigh-Taylor instability. The circulation and Reynolds number of the vortical structures are calculated from the measured velocities by modeling a piston vortex generator. The results of the flow visualization are also compared with contemporary numerical simulations.Keywords
This publication has 29 references indexed in Scilit:
- Heuristic model of the nonlinear Rayleigh-Taylor instabilityJournal of Applied Physics, 1981
- Shock waves at a slow-fast gas interfaceJournal of Fluid Mechanics, 1978
- Shock waves at a fast-slow gas interfaceJournal of Fluid Mechanics, 1978
- Acoustic tunnellingProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1978
- Precursor shock waves at a slow—fast gas interfaceJournal of Fluid Mechanics, 1976
- The focusing of weak shock wavesJournal of Fluid Mechanics, 1976
- On density effects and large structure in turbulent mixing layersJournal of Fluid Mechanics, 1974
- Transmitted Waves in the Diffraction of Sound from Liquid CylindersThe Journal of the Acoustical Society of America, 1970
- Behaviour of small regions of different gases carried in accelerated gas flowsJournal of Fluid Mechanics, 1960
- The refraction of shock waves at a gaseous interfaceJournal of Fluid Mechanics, 1956