The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. III. Simulations with Radiative Cooling and Realistic Opacities

Abstract
This paper presents a fully three-dimensional radiative hydrodymanics simulation with realistic opacities for a gravitationally unstable 0.07 M disk around a 0.5 M star. We address the following aspects of disk evolution: the strength of gravitational instabilities under realistic cooling, mass transport in the disk that arises from GIs, comparisons between the gravitational and Reynolds stresses measured in the disk and those expected in an α-disk, and comparisons between the SED derived for the disk and SEDs derived from observationally determined parameters. The mass transport in this disk is dominated by global modes, and the cooling times are too long to permit fragmentation for all radii. Moreover, our results suggest a plausible explanation for the FU Ori outburst phenomenon.
All Related Versions