Gene mapping and genetic epidemiology require large-scale computation of likelihoods based on human pedigree data. Although computation of such likelihoods has become increasingly sophisticated, fast calculations are still impeded by complex pedigree structures, by models with many underlying loci and by missing observations on key family members. The current paper ‘introduces’ a new method of array factorization that substantially accelerates linkage calculations with large numbers of markers. This method is not limited to nuclear families or to families with complete phenotyping. Vectorization and parallelization are two general-purpose hardware techniques for accelerating computations. These techniques can assist in the rapid calculation of genetic likelihoods. We describe our experience using both of these methods with the existing program MENDEL. A vectorized version of MENDEL was run on an IBM 3090 supercomputer. A parallelized version of MENDEL was run on parallel machines of different architectures and on a network of workstations. Applying these revised versions of MENDEL to two challenging linkage problems yields substantial improvements in computational speed.