Supervised Dimension Reduction of Intrinsically Low-Dimensional Data

Abstract
High-dimensional data generated by a system with limited degrees of freedom are often constrained in low-dimensional manifolds in the original space. In this article, we investigate dimension-reduction methods for such intrinsically low-dimensional data through linear projections that preserve the manifold structure of the data. For intrinsically one-dimensional data, this implies projecting to a curve on the plane with as few intersections as possible. We are proposing a supervised projection pursuit method that can be regarded as an extension of the single-index model for nonparametric regression. We show results from a toy and two robotic applications.

This publication has 9 references indexed in Scilit: