Timing of Changes in Interstitial and Venous Blood Glucose Measured With a Continuous Subcutaneous Glucose Sensor
Top Cited Papers
- 1 November 2003
- journal article
- Published by American Diabetes Association in Diabetes
- Vol. 52 (11) , 2790-2794
- https://doi.org/10.2337/diabetes.52.11.2790
Abstract
The objective of this study was to use a subcutaneous continuous glucose sensor to determine time differences in the dynamics of blood glucose and interstitial glucose. A total of 14 patients with type 1 diabetes each had two sensors (Medtronic/MiniMed CGMS) placed subcutaneously in the abdomen, acquiring data every 5 min. Blood glucose was sampled every 5 min for 8 h, and two liquid meals were given. A smoothing algorithm was applied to the blood glucose and interstitial glucose curves. The first derivatives of the glucose traces defined and quantified the timing of rises, peaks, falls, and nadirs. Altogether, 24 datasets were used for the analysis of time differences between interstitial and blood glucose and between sensors in each patient. Time differences between blood and interstitial glucose ranged from 4 to 10 min, with the interstitial glucose lagging behind blood glucose in 81% of cases (95% CIs 72.5 and 89.5%). The mean (±SD) difference between the two sensors in each patient was 6.7 ± 5.1 min, representing random variation in sensor response. In conclusion, there is a time lag of interstitial glucose behind blood glucose, regardless of whether glycemia is rising or falling, but intersensor variability is considerable in this sensor system. Comparisons of interstitial and blood glucose kinetics must take statistical account of variability between sensors.Keywords
This publication has 18 references indexed in Scilit:
- Spurious Reporting of Nocturnal Hypoglycemia by CGMS in Patients With Tightly Controlled Type 1 DiabetesDiabetes Care, 2002
- Glucose monitoring by reverse iontophoresisDiabetes/Metabolism Research and Reviews, 2002
- Sensitive glucose sensing in diabetesThe Lancet, 2000
- Sensitive glucose sensing in diabetesThe Lancet, 2000
- Noninvasive Glucose MonitoringJAMA, 1999
- Use of a Subcutaneous Glucose Sensor To Detect Decreases in Glucose Concentration Prior to Observation in BloodAnalytical Chemistry, 1996
- Does fall in tissue glucose precede fall in blood glucose?Diabetologia, 1996
- Key metabolite kinetics in human skeletal muscle during ischaemia and reperfusion: measurement by microdialysisEuropean Journal of Clinical Investigation, 1995
- Continuous Blood Glucose Monitoring: A PreviewDiabetic Medicine, 1984
- In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus.Journal of Clinical Investigation, 1983