The dusty environment of Quasars. Far-IR properties of Optical Quasars
Preprint
- 13 November 2002
Abstract
We present the ISO far-IR photometry of a complete sub-sample of optically selected bright quasars belonging to two complete surveys selected through multicolour (U,B,V,R,I) techniques. The ISOPHOT camera on board of the ISO Satellite was used to target these quasars at wavelengths of 7.3, 11.5, 60, 100 and 160 micron. Almost two thirds of the objects were detected at least in one ISOPHOT band. The detection rate is independent of the source redshift, very likely due to the negative K-correction of the far-IR thermal emission. More than a half of the optically selected QSOs show significant emission between 4 and 100 micron in the quasar rest-frame. These fluxes have a very likely thermal origin, although in a few objects an additional contribution from a non-thermal component is plausible in the long wavelength bands. In a colour-colour diagram these objects span a wide range of properties from AGN-dominated to ULIRG-like. The far-IR composite spectrum of the quasar population presents a broad far-IR bump between 10 and 30 micron and a sharp drop at wavelengths greater than 100 micron in the quasar restframe. The amount of energy emitted in the far-IR, is on average a few times larger than that emitted in the blue and the ratio L(FIR)/L(B) increases with the bolometric luminosity. Objects with fainter blue magnitudes have larger ratios between the far-IR (wavelengths > 60 micron) fluxes and the blue band flux, which is attributed to extinction by dust around the central source. No relation between the blue absolute magnitude and the dust colour temperature is seen, suggesting that the dominant source of FIR energy could be linked to a concurrent starburst rather than to gravitational energy produced by the central engine.Keywords
All Related Versions
- Version 1, 2002-11-13, ArXiv
- Published version: The Astronomical Journal, 125 (2), 444.
This publication has 0 references indexed in Scilit: