Abstract
The effective valence shell Hamiltonian (Hv) of S2 is calculated as a function of internuclear distance using quasidegenerate many‐body perturbation theory with the full valence space spanned by eight valence orbitals. Calculated potential curves and excitation energies for several valence states are in good agreement with experiment and are compared with configuration interaction calculations using the same primitive basis. In order to test assumptions of semiempirical theories, we also perform a more approximate calculation of Hv in which the valence space is constructed as the union of the atomic valence spaces with the atomic orbitals taken from atomic SCF calculations. A new and important feature of this approximate, correlated Hv is the use of optimized valence and excited orbitals as determined from a constrained SCF procedure. The matrix elements of this approximate, correlated Hv are transformed to the original nonorthogonal atomic valence basis, and their bond length dependences are fit with simple analytical functions. Some calculated Hv matrix elements agree with the forms commonly postulated for semiempirical integrals, while others display quite different behavior. An example of the latter are the one‐center, two‐electron integrals which depend significantly on bond length in marked contrast to semiempirical theories which assume them to be bond length independent.

This publication has 26 references indexed in Scilit: