A treatment of the volume and fluctuation term in Poisson's equation in the Debye-Hückel theory of strong electrolyte solutions

Abstract
A modified Poisson-Boltzmann equation for symmetrical electrolytes is considered which includes estimates for both the fluctuation potential and the volume term. The equation is solved using a previously developed quasilinearization procedure for 1 : 1 and 2 : 2 electrolytes and the results compared with the Monte Carlo computations. In the 1 : 1 case good agreement is found with the Monte Carlo calculations, the results being on a par with the HNC calculations. In the 2 : 2 case satisfactory qualitative agreement is found with the preliminary findings of the Monte Carlo calculations.