High-Throughput Method for Detecting Genomic-Deletion Polymorphisms
Open Access
- 1 July 2004
- journal article
- Published by American Society for Microbiology in Journal of Clinical Microbiology
- Vol. 42 (7) , 2913-2918
- https://doi.org/10.1128/jcm.42.7.2913-2918.2004
Abstract
DNA microarrays have been successfully used with different microorganisms, including Mycobacterium tuberculosis , to detect genomic deletions relative to a reference strain. However, the cost and complexity of the microarray system are obstacles to its widespread use in large-scale studies. In order to evaluate the extent and role of large sequence polymorphisms (LSPs) or insertion-deletion events in bacterial populations, we developed a technique, termed deligotyping, which hybridizes multiplex-PCR products to membrane-bound, highly specific oligonucleotide probes. The approach has the benefits of being low cost and capable of simultaneously interrogating more than 40 bacterial strains for the presence of 43 genomic regions. The deletions represented on the membrane were selected from previous comparative genomic studies and ongoing microarray experiments. Highly specific probes for these deletions were designed and attached to a membrane for hybridization with strain-derived targets. The targets were generated by multiplex PCR, allowing simultaneous amplifications of 43 different genomic loci in a single reaction. To validate our approach, 100 strains that had been analyzed with a high-density microarray were analyzed. The membrane accurately detected the deletions identified by the microarray approach, with a sensitivity of 99.9% and a specificity of 98.0%. The deligotyping technique allows the rapid and reliable screening of large numbers of M. tuberculosis isolates for LSPs. This technique can be used to provide insights into the epidemiology, genomic evolution, and population structure of M. tuberculosis and can be adapted for the study of other organisms.Keywords
This publication has 44 references indexed in Scilit:
- Whole-Genome Comparison ofMycobacterium tuberculosisClinical and Laboratory StrainsJournal of Bacteriology, 2002
- Comparative Genomics of Listeria SpeciesScience, 2001
- Comparing Genomes within the Species Mycobacterium tuberculosisGenome Research, 2001
- Genomic Sequence and Transcriptional Analysis of a 23-Kilobase Mycobacterial Linear Plasmid: Evidence for Horizontal Transfer and Identification of Plasmid Maintenance SystemsJournal of Bacteriology, 2001
- Bacterial population genetics, evolution and epidemiologyPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1999
- Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequenceNature, 1998
- Accessing Genetic Information with High-Density DNA ArraysScience, 1996
- Rapid typing of group A streptococci by the use of DNA amplification and non-radioactive allele-specific oligonucleotide probesFEMS Microbiology Letters, 1994
- Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing methodMolecular Microbiology, 1993
- How clonal are bacteria?Proceedings of the National Academy of Sciences, 1993