FT-IR Step-Scan Photoacoustic Phase Analysis and Depth Profiling of Calcified Tissue

Abstract
Rapid-scan- and step-scan-based Fourier transform infrared photoacoustic depth profiling results of an extracted but intact human tooth are compared. The effects of various data processing methods are examined. Analysis of the phase dispersion of the photothermal signal along with spectral linearization is used to access the extent of photoacoustic saturation in the photoacoustic spectra. Phase-modulated/phase-resolved depth profiling methods are less prone to photoacoustic saturation and provide superior localization of the surface and subsurface absorbers distributed in the tooth enamel. Mid-infrared depth profiling studies of calcified tissues can aid in the understanding of degenerative bone diseases, bone growth, and modeling, as well as tissue mineralization.