Comparison of secondary structures of insulin and proinsulin by FTIR

Abstract
Although the structure of insulin is known in great detail, that of proinsulin has been little investigated, except for a few CD and NMR studies. The secondary structures of human proinsulin are now compared with those of insulin by Fourier Transformed Infrared (FTIR) studies. The deconvolved and second derivative spectra of proinsulin and insulin in the amide I' band region are closely similar with peaks corresponding to α-helix, irregular helix, and 310 helix at nearly identical positions. For both proteins, the relative contents of the above structures as calculated from the peak areas are in good agreement with the values obtained from the known structure of crystalline porcine insulin. However, compared with insulin, proinsulin has markedly more unordered structures as indicated by the area under the peak at 1643.4 cm−1. In addition, both peak positions and relative areas for turn structure of the prohormone are different from those for insulin. It appears from the above that the A-and B-chain segments of proinsulin and insulin are similar in their secondary structures, especially in helices. The C-chain segment is largely unordered except in a few β-turns.