On laminar flow in curved semicircular ducts

Abstract
Calculations of the flow field under laminar conditions in a helical semicircular duct have been made by numerically solving the Navier–Stokes equations. With the flat wall of the duct being the outer wall, the solution of the momentum equations for Dean numbers below 105 gave, for the secondary flow, twin counter-rotating vortices of Taylor–Goertler type. However, above a Dean number of Dn = 105, two solutions were possible. One solution was similar to that obtained for Dn < 105. The other solution revealed four vortices for the secondary flow. For Dn > 105, convergence to either flow pattern depended on the initial guess used in the numerical solution. Flow visualization confirmed the possibility of the presence of both types of secondary flow patterns.