The choice of window size in approximating topographic surfaces from Digital Elevation Models
- 1 September 2004
- journal article
- research article
- Published by Taylor & Francis in International Journal of Geographical Information Science
- Vol. 18 (6) , 577-593
- https://doi.org/10.1080/13658810410001701987
Abstract
Quantitative surface analysis through quadratic modelling of Digital Elevation Models (DEMs) is a promising tool for automatically describing the physical environment in ecological studies of terrestrial landscapes. Fundamental topographic variables such as slope, aspect, plan and profile curvature can be simply calculated from the parameters of a conic equation fitted to a DEM window through the least-squares method. The scale of the analysis, defined by the size of the DEM window used to fit the conic equation, affects both the estimated value of the topographic variables and the propagation of elevation errors to derived topographic variables. The least-squares method is amenable to the analytical treatment of the propagation of elevation errors to the derived topographical variables. A general analytical model of error propagation is presented that accounts for the effects of window size and of spatial autocorrelation in elevation errors. The method is based on the Taylor approximation of the least-square fitting equation and allows for the presence of stationary autocorrelation in the elevation errors. In numerical simulations with DEMs from British Columbia, Canada, it is shown that increasing the size of evaluation windows effectively reduces the propagation of elevation errors to the derived topographic variables. However, this was obtained at the expense of topographic detail. A methodology is proposed to evaluate quantitatively the loss of topographic detail through a χ 2-test of the corrected residuals in the immediate neighbourhood of the evaluation point. This methodology, in combination with the analytical model of error propagation, can be used to select the scale or range of scales at which to calculate topographic variables from a DEM.Keywords
This publication has 26 references indexed in Scilit:
- A Spatial Filter for the Removal of Striping Artifacts in Digital Elevation ModelsPhotogrammetric Engineering & Remote Sensing, 2003
- Errors of signal processing in digital terrain modellingInternational Journal of Geographical Information Science, 2002
- Representing multiple spatial statistics in generalized elevation uncertainty models: moving beyond the variogramInternational Journal of Geographical Information Science, 2002
- Assessing effects of input uncertainty in structural landscape classificationInternational Journal of Geographical Information Science, 2002
- Combined analysis of digital terrain models and remotely sensed data in landscape investigationsProgress in Physical Geography: Earth and Environment, 1998
- Accuracy of local topographic variables derived from digital elevation modelsInternational Journal of Geographical Information Science, 1998
- Improved Modeling of Elevation Error with GeostatisticsGeoInformatica, 1998
- Comparison of techniques for generating digital terrain models from contour linesInternational Journal of Geographical Information Science, 1997
- The pixel: A snare and a delusionInternational Journal of Remote Sensing, 1997
- Influence of topography on some vegetation cover propertiesCATENA, 1996