Two-State Migration of DNA in a structured Microchannel

Abstract
DNA migration in topologically structured microchannels with periodic cavities is investigated experimentally and with Brownian dynamics simulations of a simple bead-spring model. The results are in very good agreement with one another. In particular, the experimentally observed migration order of Lambda- and T2-DNA molecules is reproduced by the simulations. The simulation data indicate that the mobility may depend on the chain length in a nonmonotonic way at high electric fields. This is found to be the signature of a nonequilibrium phase transition between two different migration states, a slow one and a fast one, which can also be observed experimentally under appropriate conditions.

This publication has 0 references indexed in Scilit: