Abstract
The kinetics of the disulfide-coupled unfolding-refolding transition of a mutant form of bovine pancreatic trypsin inhibitor (BPTI) lacking Cys-14 nd -38 were measured and compared to previous results for the wild-type protein and other modified forms. The altered cysteines, which were changed to serine in the mutant protein, are normally paired in a disulfide in the native protein but form disulfides with Cys-5 in two-disulfide kinetic intermediates during folding. Although the mutant protein could fold efficiently, the kinetics of both folding and unfolding were altered, reflecting the roles of these cysteines in the two-disulfide intermediates with "wrong" disulfides. The intramolecular rate constant for the formation of the second disulfide of the native mutant protein was more than 103-fold lower than that for the formation of a second disulfide during the refolding of the wild-type protein. The observed rate of unfolding of the mutant protein was also lower than that of the wild-type protein, demonstrating that the altered cysteines are involved in the intramolecular rearrangements that are the rate-determining step in the unfolding of the wild-type protein. These results confirm the previous conclusion [Creighton, T. E. (1977) J. Mol. Biol. 113, 275-293] that the energetically preferred pathway for folding and unfolding of BPTI includes intramolecular rearrangements of intermediates in which Cys-14 and -38 are paired in disulfides not present in the native protein. The present results are also consistent with other, less detailed, studies with similar mutants lacking Cys-14 and -38 [Marks, C. B., Naderi, H., Kosen, P. A., Kuntz, I. D., and Anderson, S. (1987) Science (Washington, D.C.) 235, 1370-1371].