Solar System Objects Observed in the SDSS Commissioning Data
Preprint
- 30 May 2001
Abstract
We discuss measurements of the properties of about 10,000 asteroids detected in 500 deg2 of sky in the Sloan Digital Sky Survey (SDSS) commissioning data. The moving objects are detected in the magnitude range 14 < r < 21.5, with a baseline of 5 minutes. Extensive tests show that the sample is at least 98% complete, with the contamination rate of less than 3%. We find that the size distribution of asteroids resembles a broken power-law, independent of the heliocentric distance: D^{-2.3} for 0.4 km < D < 5 km, and D^{-4} for 5 km < D < 40 km. As a consequence of this break, the number of asteroids with r < 21.5 is ten times smaller than predicted by extrapolating the power-law relation observed for brighter asteroids (r < 18). The observed counts imply that there are about 530,000 objects with D>1 km in the asteroid belt, or about four times less than previous estimates. The distribution of main belt asteroids in the 4-dimensional SDSS color space is bimodal, and the two groups can be associated with S (rocky) and C (carbonaceous) asteroids. A strong bimodality is also seen in the heliocentric distribution of asteroids and suggests the existence of two distinct belts: the inner rocky belt, about 1 AU wide (FWHM) and centered at R~2.8 AU, and the outer carbonaceous belt, about 0.5 AU wide and centered at R~3.2 AU. The colors of Hungarias, Mars crossers, and near-Earth objects are more similar to the C-type than to S-type asteroids, suggesting that they originate in the outer belt. (abridged).Keywords
All Related Versions
- Version 1, 2001-05-30, ArXiv
- Published version: The Astronomical Journal, 122 (5), 2749.
This publication has 0 references indexed in Scilit: