Optically nonlinear polymeric devices

Abstract
Optically nonlinear side chain polymers have been used to make a number of polymeric electro-optic and thermo-optic switching devices. The following devices are described and their performances discussed: a 2 X 2 electro-optical directional mode coupler; a 1 X 2 Mach-Zehnder switch comprising a Y-splitter combined with 2 parallel arms and a directional coupler section; a polarization and wavelength independent switch comprising a Y- junction; and an electro-thermo-optical Mach-Zehnder interferometer. In addition, the stability of some of the devices is presented and discussed. The directional mode coupler shows -17 dB modulation depth for 7.5 Volts switching voltage; the Mach-Zehnder switch required 10 Volts for 14 dB switching ratio; the Y-junction switch needed 50 mW for >20 dB modulation; the electro-thermo-optical Mach-Zehnder required as low as 0.5 mW to achieve (pi) -phase shift. The results show that optically nonlinear side chain polymer are attractive materials for the realization of polymeric switching devices.