Abstract
Recently M. Ikeda [1] succeeded in determining the structure of absolutely segregated algebras, i.e. algebras whose 2-cohomology groups all vanish. His beautiful result reads : an algebra A, of finite rank over its ground field, is absolutely segregated if and only if i) the residue-algebra A/N modulo the radical N is separable and, moreover, ii) the A-left-module N is an (Mo)-module. A. simplification was given by H. Nagao [5], who obtained, besides an interesting-result on algebras with vanishing 3-(or higher) cohomology groups, an elegant short proof to the fact that under the assumption of i), the property ii) is necessary, and sufficient, for the absolute segregation of A.

This publication has 3 references indexed in Scilit: