Abstract
Several theorems concerning the norming constants {a} and {bn} making a normed Markov chain {an (Xn+bn): n ≥ 0} convergent in distribution (or in probability) are given. It is shown that if Rényi's mixing conditions holds, and , whereas in the general case with α ≠ 0 and exists and are finite. Examples regarding maxima of independent and identically distributed random variables, random walk, and branching processes are considered.
Keywords

This publication has 8 references indexed in Scilit: