Inactivation of Escherichia coli by Photochemical Reaction of Ferrioxalate at Slightly Acidic and Near-Neutral pHs
Open Access
- 1 February 2004
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 70 (2) , 1129-1134
- https://doi.org/10.1128/aem.70.2.1129-1134.2004
Abstract
Fenton chemistry, which is known to play an effective role in degrading toxic chemicals, is difficult to apply to disinfection in water treatment, since its reaction is effective only at the acidic pH of 3. The presence of oxalate ions and UV-visible light, which is known as a photoferrioxalate system, allows the Fe(III) to be dissolved at slightly acidic and near-neutral pHs and maintains the catalytic reaction of iron. This study indicates that the main oxidizing species in the photoferrioxalate system responsible for microorganism inactivation is OH radical. Escherichia coli was used as an indicator microorganism. The CT value (OH radical concentration × contact time; used to indicate the effect of the combination of the concentration of the disinfectant and the contact time on inactivation) for a 2-log inactivation of E. coli was approximately 1.5 × 10 −5 mg/liter/min, which is approximately 2,700 times lower than that of ozone as estimated by the delayed Chick-Watson model. Since the light emitted by the black light blue lamp is similar to sunlight in the specific wavelength range of 300 to 420 nm, the photoferrioxalate system, which can have a dual function, treating water for both organic pollutants and microorganisms simultaneously, shows promise for the treatment of water or wastewater in remote or rural sites. However, the photoferrioxalate disinfection system is slower in inactivating microorganisms than conventional disinfectants are.Keywords
This publication has 22 references indexed in Scilit:
- RETRACTED: Disinfection of Bacillus subtilis spores with chlorine dioxide: a bench-scale and pilot-scale studyWater Research, 2002
- Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III)Published by Elsevier ,2001
- Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 systemWater Research, 2000
- Inactivation of Escherichia coli with ozone: chemical and inactivation kineticsWater Research, 1999
- The Photochemical Generation of Hydroxyl Radicals in the UV−vis/Ferrioxalate/H2O2 SystemEnvironmental Science & Technology, 1999
- Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton ReactionEnvironmental Science & Technology, 1996
- Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluentWater Research, 1995
- Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexesEnvironmental Science & Technology, 1992
- Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reactionEnvironmental Science & Technology, 1992
- Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD)Water Research, 1988