Gamma Oscillations in Human Primary Somatosensory Cortex Reflect Pain Perception

Top Cited Papers
Open Access
Abstract
Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using magnetoencephalography, we show that selective nociceptive stimuli induce gamma oscillations between 60 and 95 Hz in primary somatosensory cortex. Amplitudes of pain-induced gamma oscillations vary with objective stimulus intensity and subjective pain intensity. However, around pain threshold, perceived stimuli yielded stronger gamma oscillations than unperceived stimuli of equal stimulus intensity. These results show that pain induces gamma oscillations in primary somatosensory cortex that are particularly related to the subjective perception of pain. Our findings support the hypothesis that gamma oscillations are related to the internal representation of behaviorally relevant stimuli that should receive preferred processing. Pain is a highly subjective sensation of inherent behavioral importance and is therefore expected to receive enhanced processing in relevant brain regions. We show that painful stimuli induce high-frequency oscillations in the electrical activity of the human primary somatosensory cortex. Amplitudes of these pain-induced gamma oscillations were more closely related to the subjective perception of pain than to the objective stimulus attributes. They correlated with participants' ratings of pain and were stronger for laser stimuli that caused pain, compared with the same stimuli when no pain was perceived. These findings indicate that gamma oscillations may represent an important mechanism for processing behaviorally relevant sensory information.