Electron-Hole Pair Creation at Ag and Cu Surfaces by Adsorption of Atomic Hydrogen and Deuterium

Abstract
Hot electrons and holes created at Ag and Cu surfaces by adsorption of thermal hydrogen and deuterium atoms have been measured directly with ultrathin metal film Schottky diode detectors on Si(111). When the metal surface is exposed to these atoms, charge carriers are excited at the surface, travel ballistically toward the interface, and have been detected as a chemicurrent in the diode. The current decreases with increasing exposure and eventually reaches a constant value at the steady-state coverage. This is the first direct evidence of nonadiabatic energy dissipation during adsorption at transition metal surfaces.